info@reallab.ru                                   +7 (495) 26-66-700 (многоканальный)              +7 (928) 289-24-86 (WA), +7 (961) 427-15-45 (дополнительные номера)
RealLab — Эффективная безопасностьтехнологических процессов
Российское оборудование и системы
промышленной автоматизации
0
ИТОГО
0 Р
В том числе НДС
0,00 Р
Ваша корзина пуста. Добавить товары в корзину.

Применение терморезисторов (термисторов) для измерения температуры

Введение

Терморезисторы (термисторы) - это резисторы, сопротивление которых сильно изменяется в зависимости от температуры. Термисторы изготавливаются на основе полупроводникового материала и имеют нелинейную вольт-амперную характеристику. Термисторы с положительным температурным коэффициентов сопротивления (ТКС) называются позисторами. Благодаря чувствительности к температуре термисторы используются для измерения температуры и построения систем управления температурой в технологическом и лабораторном оборудовании.

Терморезисторы изготавливаются на основе полупроводникового оксида металлов, спрессованного для получения заданной формы. Механическая прочность и защита от воздействий окружающей среды обеспечивается с помощью металлического корпуса или защитного изолирующего слоя. Термисторы имеют нелинейную вольт-амперную характеристику и очень высокую температурную чувствительность по сравнению с другими типами датчиков температуры. Типовое значение ТКС для термисторов составляет -5% на градус, в то время как для платинового термопреобразователя (RTD) он составляет 0,4% на градус.

Типовой диапазон температур термисторов достаточно узок (-60...+150 С), для некоторых образцов он расширен до (-60...+300 С).

Важным преимуществом термисторов является их большое сопротивление, что устраняет проблему, связанную с падением напряжения на подводящих проводах, как при использовании RTD или проблему, связанную с необходимостью большого усиления сигнала (до 2000) для термопар.

Температурная зависимость

Зависимость сопротивления термисторов от температуры в диапазоне нескольких десятков градусов удовлетворительно описывается экспоненциальной функцией (рис.1)

где А - сопротивление при бесконечно большой температуре, В - коэффициент температурной чувствительности (его значения обычно лежат в диапазоне 1200-16000).

Из выражения (1) можно получить связь между ТКС терморезистора ( ) и коэффициентом температурной чувствительности в виде

Величину ТКС обычно приводят в справочниках для температуры 20 С (293 К).

Рис.1. Зависимость сопротивления от температуры для термистора ММТ-1 22Ком.

При протекании тока через терморезистор он нагревается, что увеличивает погрешность измерений. Поэтому при выборе терморезистора необходимо учитывать его коэффициент рассеяния, который определяется как мощность, приводящая к нагреву терморезистора на 1 градус относительно температуры окружающей среды. Для снижения погрешности, вызванной собственным разогревом термистора, необходимо увеличивать площадь его поверхности, однако это приводит к увеличению тепловой инерционности, которая характеризуется величиной постоянной времени. Постоянная времени терморезистора равна времени, в течение которого его температура изменяется в е раз (на 63%) при перенесении термистора из воздушной среды с температурой 0 град. Цельсия в воздушную среду с температурой 100 град. Типовые значения постоянных времени лежат в диапазоне от десятых долей секунды до нескольких минут.

Линеаризация характеристик

В связи с сильной нелинейностью температурной зависимости терморезисторы не могут быть использованы без компенсации нелинейности (линеаризации) их характеристики. Для этой цели используют нелинейные аппроксимирующие функции, коэффициенты которых подбирают методом наименьших квадратов или другими методами параметрической идентификации. Этот недостаток термисторов сильно ограничивал их применение до появления средств измерения температуры, построенных на базе компьютера. Применение компьютера позволяет легко скомпенсировать нелинейность программным путем. Эта особенность увеличила интерес к применению термисторов в последние годы и инициировала дальнейшие исследования в направлении улучшения их стабильности, точности и взаимозаменяемости.

Для компенсации нелинейности термисторов используют формулу Стейнхард-Харта:

где температура дана в градусах Кельвина, (К = С + 273,15);  - сопротивление термистора. Коэффициенты уравнения подбираются из условия наилучшего приближения к экспериментально полученной зависимости или поставляются изготовителем термистора.

Измерительная цепь

Цепь измерения температуры с использованием термистора состоит из источника тока и самого термистора. Падение напряжения на термисторе прямо пропорционально его сопротивлению и считывается дифференциальным усилителем. Для устранения паразитного влияния помех усилитель должен иметь достаточно большой коэффициент ослабления синфазного сигнала.

Несколько худший результат по температурной чувствительности дают измерительные схемы, в которых ток термистора задается не от идеального источника тока, а от источника напряжения через последовательно включенное сопротивление.

Чувствительность схемы измерения температуры пропорциональна величины тока через термистор. Поэтому этот ток следует выбирать как можно больше, но так, чтобы погрешность. вносимая эффектом саморазогрева термистора, находилась в допустимых пределах. Перегрев термистора на 1 градус вызывается мощностью, равной его коэффициенту рассеяния.

Коэффициент рассеяния существенно зависит от теплопроводности среды, в которой находится терморезистор (вода, воздух, контакт с металлом), поэтому необходимо принимать во внимания условия, при которых он измеряется изготовителем. При использовании термистора в иной среде необходимо предварительно измерять коэффициент рассеяния. Например, если на термисторе рассеивается мощность 2 мВт, а его коэффициент рассеяния равен 10 мВт/град, то саморазогрев термистора составит 0,2 град. Если требуемая погрешность измерения должна быть меньше, следует уменьшить ток через термистор и улучшить экранирование токоподводящих проводов, поскольку при уменьшении тока ухудшается отношение сигнал/помеха.

Для улучшения отношения сигнал/помеха при значительном удалении термодатчика от системы сбора данных используют фильтр нижних частот с полосой, которая зависит от требуемой скорости измерений и тепловой инерционности термодатчика. Типовым применениям удовлетворяет фильтр третьего порядка с полосой 5 Гц, например, фильтр RL-8F3 из серии RealLab!

 

Располагается на площади 8900 м², оснащено самым современным технологическим оборудованием, имеет научно-исследовательское и конструкторское подразделение, использующие передовые средства автоматизации проектирования.

 



   
     
               
 
КОНТАКТЫ

Телефон:


Режим работы:
Адрес:

Почта:

+7 (495) 26-66-700
+7 (928) 289-24-86, 
+7 (961) 427-15-45
с 8:00 до 16:30
Биржевой Спуск, 8
г. Таганрог, Россия
info@reallab.ru

Оставьте свой номер и мы перезвоним Вам

Имя:

Телефон:

Организация:

Нажимая на кнопку «Отправить сообщение», вы даете согласие на обработку своих персональных данных и соглашаетесь с политикой конфиденциальности.

© НИЛ АП, ООО, 1989-2024

Дизайн-студия cCube. Разработка и поддержка сайтов
Разработка и поддержка
cCube.ru